9.4 Surface Area and Volume of 3-D Shapes

In this section we calculate the volume and surface area of 3-D shapes such as cubes, cuboids, prisms and cylinders.

Example 1

(a) Calculate the volume of the cuboid shown.
(b) Calculate the surface area of the cuboid shown.

Solution

(a) Volume $=4 \times 18 \times 5$

$$
=360 \mathrm{~m}^{3}
$$

(b) Surface area $=(2 \times 4 \times 18)+(2 \times 4 \times 5)+(2 \times 5 \times 18)$

$$
\begin{aligned}
& =144+40+180 \\
& =364 \mathrm{~m}^{2}
\end{aligned}
$$

Example 2

Calculate the volume and total surface area of the cylinder shown.

Solution

$$
\begin{aligned}
\text { Volume } & =\pi r^{2} h=\pi \times 4^{2} \times 6=96 \pi \\
& =301.5928947 \mathrm{~cm}^{3} \\
& =302 \mathrm{~cm}^{3} \quad \text { (to } 3 \text { significant figures) }
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of curved surface } & =2 \pi r h=2 \times \pi \times 4 \times 6 \\
& =48 \pi \\
& =150.7964474 \mathrm{~cm}^{2}
\end{aligned}
$$

$$
\begin{aligned}
\text { Area of each end } & =\pi r^{2}=\pi \times 4^{2} \\
& =16 \pi \\
& =50.26548246 \mathrm{~cm}^{2}
\end{aligned}
$$

Total surface area $=150.7964474+(2 \times 50.26548246)$

$$
=251.3274123 \mathrm{~cm}^{2}
$$

$$
=251 \mathrm{~cm}^{2} \quad \text { (to } 3 \text { significant figures) }
$$

Note: From the working we can see that the area of the curved surface is 48π, and that the area of each end is 16π. The total surface area is therefore

$$
\begin{aligned}
48 \pi+(2 \times 16 \pi) & =80 \pi=251.3274123 \mathrm{~cm}^{2} \\
& =251 \mathrm{~cm}^{2} \quad \text { (to } 3 \text { significant figures) }
\end{aligned}
$$

Example 3

Calculate the volume of this prism.

Solution

Area of end of prism $=\frac{1}{2} \times 8 \times 6$

$$
=24 \mathrm{~cm}^{2}
$$

Volume of prism

$$
=24 \times 10
$$

$$
=240 \mathrm{~cm}^{3}
$$

Exercises

1. Calculate the volume and surface area of each of the following cuboids:
(a)

(b)

2. Giving your answers correct to 3 significant figures, calculate the volume and total surface area of each of the following cylinders:
(a)

(b)

3. Calculate the volume of each of the following prisms:

(b)

4. Calculate the volume and surface area of the following prism:

5. The diagram shows a wooden block that has had a hole drilled in it. The diameter of the hole is 2 cm .
Calculate the volume of this solid, giving your answer correct to 2 decimal places.

6. A concrete beam is to rest on two concrete pillars. The beam is a cuboid with sides of length 0.5 m , 3 m and 0.4 m .

The pillars have diameter 0.4 m and height 2 m .

Calculate the total volume of concrete needed to make the beam and the
 pillars. Round your answer to a sensible level of accuracy.
7. The diagram shows the cross-section of a pipe of length 50 cm .

The inner diameter of the pipe is 20 cm and the outer diameter is 30 cm .

(a) Calculate the volume of metal needed to make the pipe. Round your answer to a sensible level of accuracy.
(b) Calculate the total surface area of the pipe, including the inside surface. Round your answer to a sensible level of accuracy.
8. The diagram shows a prism. The cross-section of the prism consists of a rectangle and a semicircle.
(a) Calculate the volume of the prism. Give your answer to the nearest cm^{3}.

(b) Calculate the total surface
area of the prism. Give your answer to the nearest cm^{2}.
9. The volume of the prism shown is $720 \mathrm{~mm}^{3}$.

(a) Determine the length of the prism.
(b) Calculate the surface area of the prism.
10. A cylinder has a diameter of 12 cm and a curved surface area of 132π or $415 \mathrm{~cm}^{2}$ (to 3 significant figures).
(a) Determine the height of the cylinder.
(b) Calculate the volume of the cylinder, giving your answer to the nearest cm^{3}.
11. (a) These cuboids are made from small cubes.

Write how many small cubes there are in each cuboid.
The first is done for you.
(i)

Cube (i) is made from 12 small cubes.
(ii)

(iii)

(b) This shape is made with two cuboids.

Write how many cubes there are in this shape.

12. (a) What is the volume of this standard size box of salt?

(b) What is the volume of this special offer box of salt, which is 20% bigger?

The standard size box contains enough salt to fill up 10 salt pots.
Salt

(c) How many salt pots may be filled up from the special offer box of salt?
(KS3/96/Ma/Tier 5-7/P2)
13. (a) Look at this triangle.

Show working to explain why angle x must be a right angle.

(b) What is the volume of this prism?

You must show each step in your working.

(c) Prisms A and B have the same cross-sectional area.

Copy and complete the table:

	Prism A	Prism B
height	5 cm	3 cm
volume	$200 \mathrm{~cm}^{3}$	$\ldots \ldots \ldots . \mathrm{cm}^{3}$

14. TJ's Cat Food is sold in tins shaped like this.

Each tin has an internal height of 5 cm .

(a) The area of the lid of the tin is $35 \mathrm{~cm}^{2}$.

Work out the volume of cat food that the tin contains.
(b) The label that goes round the tin overlaps by 1 cm .

The area of the label is $134 \mathrm{~cm}^{2}$.
Work out the distance around the tin.
Show your working.

TJ's Cat Food plans to use tins that are the shape of cylinders.
The internal measurements of a tin are shown.

(c) Work out the volume of cat food that the tin contains. Show your working.

