Entropy Worksheet

Use the following entropy of formation table in questions 1 - 5.

The Standard Enthalpy and Entropy of Various Substances

Substance	$\Delta H_f^o \left(kJ/mol \right)$	$S^o (J/K \cdot mol)$
$C_4H_{10(g)}$	-126	310
$CaC_{2(s)}$	-63	70.
$Ca(OH)_{2(s)}$	-987	83
$C_2H_{2(g)}$	227	201
$CO_{2(g)}$	-394	214
$H_{2(g)}$	0	131
$H_2O_{(g)}$	-242	189
$H_2O_{(L)}$	-286	70.
$NH_{3(g)}$	-46	193
$NO_{(g)}$	90.	211
$NO_{2(g)}$	34	240.
$N_2O_{(g)}$	82	220.
$O_{2(g)}$	0	205
$O_{3(g)}$	143	239

1. Using data from the entropy of formation table above, calculate the entropy of reaction for

$$3 H_{2(g)} + O_{3(g)} \rightarrow 3 H_2O_{(g)}$$
.

2. Using data from the entropy of formation table above, calculate the change in entropy for

$$2 NO_{(g)} + O_{2(g)} \rightarrow 2 NO_{2(g)}$$
.

2 Entropy Worksheet

3. Using data from the heat of formation table above, calculate the ΔS^o for

$$N_2O_{(g)} + NO_{2(g)} \rightarrow 3 \ NO_{(g)}$$
.

4. Using data from the entropy of formation table above, calculate the heat of reaction for

$$CaC_{2(s)} + 2 H_2O_{(L)} \rightarrow Ca(OH)_{2(s)} + C_2H_{2(g)}.$$

5. Using the entropy of formation table above, calculate the change in entropy for the following reaction.

$$C_4H_{10(g)} + \frac{13}{2} O_{2(g)} \rightarrow 4 CO_{2(g)} + 5 H_2O_{(g)}$$